
Distributed Smart Camera Calibration using
Blinking LED

Michael Koch1,2, Zoran Zivkovic1, Richard Kleihorst1 and Henk Corporaal2

1 NXP Semiconductor Research, High Tech Campus 32, 5656 AE Eindhoven,
The Netherlands

{michael.a.koch, zoran.zivkovic, richard.kleihorst}@nxp.com
2 University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

{m.a.koch@student.tue.nl, h.corporaal@tue.nl}

Abstract. Smart camera networks are very powerful for various com-
puter vision applications. As a preliminary step in the application, every
camera in the scene needs to be calibrated. For most of the calibration
algorithms, image point correspondences are needed. Therefore, easy to
detect objects can be used like LEDs. Unfortunately, existing LED based
calibration methods are highly sensitive to lighting conditions and only
perform well in dark conditions. Therefore, in this paper, we propose a
robust LED detection method for the calibration process. The main con-
tribution to the robustness of our algorithm is the blinking behavior of
the LED, enabling the use of temporal pixel information. Experiments
show that accurate LED detection is already possible for a sequence
length of three frames. A distributed implementation on a truly embed-
ded smart camera is performed. Finally, a successful spatial calibration
is performed with this implemented method.

Key words: Blinking LED Detection, Distributed Calibration

1 Introduction

Due to the continuously falling prices of cameras and computing elements, the
combination of these two elements on one platform, a smart camera, becomes
more and more interesting. The resulting vision system is capable of real-time
extracting information from captured images out of the scene and sharing the re-
sults to the outside world by means of (wireless) communication while its power
can be drawn from a battery. Deploying a smart camera network can be very
helpful for certain applications because of the different scene observations of the
cameras. For a proper use of the application, all the cameras in the scene must
know the (relative) location and rotation of all scene cameras with respect to
a chosen origin. Also, the internal orientations of all cameras must be known.
Hence, we must preliminary calibrate the scene cameras. During camera calibra-
tion, the intrinsic and extrinsic camera parameters are estimated [1–3].

In general for a multi-camera setup, one has to find matching pairs of image
locations from different cameras of 3D world points or lines to perform the

calibration process [1, 2, 4–6]. Another approach to this calibration process is
the use of dynamic silhouettes, like walking persons [7]. We will focus on the
point or line correspondence search. These points or lines can include e.g. edges
or corners. The estimation of the image locations of these lines or points must be
as accurate as possible, preferably sub-pixel level, for reliable calibration results.
To succeed in the calibration procedure, the scene must contain enough points
or lines to detect, but unfortunately, they will generally differ from camera to
camera because of the different viewing angles. Also, not all scenes will result in
enough points or lines to detect, making calibration impossible. Therefore, a light
source (e.g. a LED) as easy to detect scene object can be used, assuming we do
not have an uncommon critical camera configuration [8–10]. Several LED based
camera calibration methods already exist. Unfortunately, from our experiments,
these methods are highly sensitive to lighting conditions. As a result, they only
give a low number of false detections if performed in darkness. Hence, these
methods are not well suited for a robust calibration procedure.

We present an approach to the LED detection robust against lighting condi-
tions, enabling camera calibrations in both indoor and outdoor setups. The LED
will blink at a certain rate to contribute to the robustness of the algorithm. The
blinking pattern of the LED can be e.g. square-wave, sinusoidal or of some other
(unique, for identification [11]) form. We will use the square-wave pattern be-
cause we initially use a single LED and hence do not yet require identification.

Basic extrinsic camera calibration is described first in Chap. 2. Then, we
analyze different choices for the calibration object in Chap. 3. Blinking LED de-
tection and implementation on a smart camera are described in Chaps. 4 and 5,
respectively. In Chap. 6, experimental LED detection results with two different
pattern recognition metrics and three different LED blinking frequencies are pre-
sented. Finally, an extrinsic calibration of a smart camera network is successfully
performed.

2 Extrinsic Camera Calibration Procedure

The extrinsic camera parameters consist of the pose of the camera with respect
to a reference coordinate system. In a camera network, one camera can be chosen
as the reference and the poses of other cameras can be determined with respect to
the reference camera. Because the poses of the cameras in a N -camera network,
with N > 2, can be easily obtained by combining the appropriate pairwise poses,
we will focus here on the relative pose between two cameras for simplification.

A straightforward parametrization of the relative pose is to use three values
for the rotation angles and another three values for the translation in the x, y
and z directions. The translation is described by a three dimensional vector T
and the rotation angles can be used to define a 3× 3 rotation matrix R.

The common starting point is that n landmarks, for which the 3D positions
are unknown, are observed in both camera images. The resulting image point cor-
respondences are denoted by two sets of 2D image points {xi ↔ x′i, i = 1 . . . n}.

The problem of finding the relative pose of the cameras and the positions
of the 3D landmarks is an optimization problem with 6 + 3n parameters (6 for
the extrinsic pose parameters plus 3 for each landmark). By assuming Gaussian
noise, a Maximum Likelihood estimate of the parameters can be obtained. How-
ever, this optimization problem is non-linear and hard to solve. It is possible to
directly find a solution that approximates the Maximum Likelihood solution by
using the so called essential matrix and e.g. the Normalized Eight Point Algo-
rithm [1, 4, 6] or the Five Point Algorithm [12].

The essential matrix is the algebraic representation of the intrinsic projective
geometry between two views. The essential matrix E is a 3 × 3 matrix of rank
two. If a 3D space point X is imaged as x on the image plane of the first camera
and as x’ in the second camera’s image plane, then the image points satisfy the
relation x̂′TEx̂ = 0 where x̂ and x̂′ are the normalized image coordinates of x
and x′, respectively. The optimal E is computed after which the relative rotation
and translation can be recovered from this matrix [5]. The reconstruction is up
to a scale factor since the same scene if scaled by a scale factor gives the same 2D
image projections of the 3D points. To recover the scale of the scene additional
information is needed about certain metric scene distances, for example the
distance between two points in the scene.

3 Object Choice

It is difficult to calibrate a camera network automatically since it is hard to
match image points or lines between very different views. For robustness, we
require scene adaption from the user who will put in a scene object, creating
easy to detect points or lines in the camera’s viewing frustums.

The use of an object with known lengths has the advantage that the scale
factor of the calibration process can be eliminated. But, such an object does
not scale, i.e. the object will appear very small in the camera image plane if the
distance to the camera sensor is too far, giving high length estimation errors. A
possible solution is to use a bigger, scaled version of the object, but that is not
very user friendly. Another solution is to make sure the distance between the
object and the camera is bounded, but this is not practical.

A light source, in contrast, is easily detected by multiple cameras as one
3D scene point, assuming that the radiation angle and radiant intensity of the
light source are high enough. The distance to the camera sensor now is not an
issue anymore, because we can fit an appropriate point spread function (e.g.
Gaussian), resulting in a sub-pixel precise estimation of the light source centre.

An incandescent light bulb can be used for this purpose, giving good results at
far distances. However, due to its high energy consumption and heat production,
it does not lend itself for a portable, battery-powered device. A LED (Light
Emitting Diode), for decennia available in a variety of colors and models (e.g.
flashing), is better suited for battery use due to its low energy consumption. If
we assume the radiation angle and the intensity output power of the LED are
high enough, a LED will perform perfectly as a camera calibration tool [13]. For

robustness, it is preferable that we use an easy-to-detect LED. An infrared LED
color can therefore be a proper choice. Every digital camera not equipped with
an infrared light blocker is sensitive to this invisible light.

Existing LED detection methods for calibration do not work properly due
to their high sensitivity for lighting conditions. An approach to this challenge
is to use a visible light filter in front of the camera to suppress all the visible
light, see Fig. 1. In Fig. 1a, no filtering is applied, but in Fig. 1b, a couple of
developed color films of an analog camera are held against the camera lens as a
simple but good working spectral high-pass infrared filter. As one can see, all the
visible light is suppressed and only the infrared light spot is visible after filtering.
Unfortunately, because the camera should also be used for the application which
can need the complete visible light spectrum, this light filter is not desirable.
After calibration, the light filter should be removed; in a camera network where
the cameras can be hard to reach, this definitely is unpractical. Therefore, in
this paper, we analyse the robust detection of a blinking LED for the calibration
process, so that we can omit the use of the unpractical light filter in combination
with the existing non-blinking LED detection methods.

a. Without IR filter b. With IR filter against camera lens

Fig. 1. Scene containing IR LED. At the back, there is a smart camera containing one
camera while at the front, the image plane of that camera is displayed on the LCD
display.

4 Blinking LED Pattern Recognition

For the blinking LED detection, we start with a sequence of N observed pixel
intensity values p = [p1 p2 . . . pN]. We assume that the LED is moving slowly
with respect to the camera’s frame rate, i.e. we assume to have at least N
measurements of the LED at the same pixel (actually it may be 2x2 pixels, if we
would downscale from VGA to QVGA). After a frequency domain conversion and
an alias term elimination in Sect. 4.1, we calculate the distance of the spectral

components with a signature in Sect. 4.2. Finally, a classifier function q is defined
which creates a Boolean output true if a valid LED sequence was observed.

4.1 Frequency Analysis

Because the LED is blinking, the intensity values of the LED containing pixels
will continuously alternate in magnitude. As a result, a frequency pixel analysis
can be performed, having the advantage that it is robust to changing light condi-
tions (which only will result in a scaling of the spectral component amplitudes).

The elements pk of the time-domain pixel intensity sequence are discrete-
time samples of the time-continuous signal p̃(t) via the relation p(k+1) = p̃ (kTs),
where k = 0, 1, . . . , (N − 1), with sampling frequency ωs = 2πfs = 2π

Ts
and

fs equal to the camera’s frame rate. According to Nyquist-Shannon’s sampling
theorem, we assume fs ≥ 2fLED, where fLED equals the blinking frequency of
the LED.

We will use the N-point Discrete Fourier Transform per pixel sequence for
frequency analysis. As a result, we will convert the discrete time, periodic pixel
intensity sequence into a discrete frequency, periodic sequence as

P =
[

F∗
(

[pi]i=1,2,...,N

)]
=
[
P1 P2 . . . PN

]
, (1)

where F∗ depicts the discrete Fourier transform. The angular frequencies of the
sequence’s individual spectral components equal

ωPi =
2π (i− 1)
NTs

. i = 1, 2, . . . , N (2)

Because the camera pixel samples cannot be infinitely small in practice, instead
of p̃(t), a ‘spread out’ version a(t) ∗ p̃(t) will be sampled [14], with a(t) equal to

a(t) =
1
τ
rect

(
t

τ

)
=

{
1
τ , |t| ≤

τ
2

0, elsewhere
, (3)

where τ , which must be smaller than the sampling interval Ts, equals the pixel
integration time of the camera sensor used. As a result, every frequency element
of (1) will be multiplied with the Fourier transformed representation of (3), i.e.

A(jω) = sinc
(ωτ

2

)
=

{
2sin(ωτ2)

ωτ , ωτ 6= 0
1, ωτ = 0

. (4)

We can hence state that in the practical case, (1) becomes

P′ =
[
Pi sinc

(ωPiτ
2

)]
1≤i≤N

. (5)

The time-domain input values are real, so the following frequency symmetry
rule holds for the frequency sequence: P ′(N−i) = P ′∗(i+2), i = 0, 1, . . . , (N − 2).

Because we are not going to use any phase information and only need the non-
DC spectral value magnitudes, we may discard the redundant numbers in (5).
As a result, feature vector P′ reduces approximately 50%. The final resulting
feature vector containing only unique values equals

P′′ =
[
|Pi|sinc

(ωPiτ
2

)]
2≤i≤bN2 c+1

. (6)

4.2 Classification

In this paper, we will analyze the (easy) Euclidean and the (more complicated,
but possibly better result giving) Mahalanobis distance measure functions for

determining distance d between P′′ and Ps =
[
Ps1 Ps2 . . . PsbN2 c

]
which equals

the signature vector, i.e. the mean values of the individual frequency components
of all possible LED containing pixels. To be more precise, every mean element
Psj equals the mean value of column j of a Mx

⌊
N
2

⌋
sized dataset matrix X,

containing all possible LED pixel intensity sequences (with one sequence per
row), as

Psj =
1
M

M∑
i=1

Xij , j = 1, 2, . . . ,
⌊
N

2

⌋
(7)

where Xij equals the element of matrix X at row i and column j.
The Euclidean distance equals the “ordinary” distance between two points,

whereas the Mahalanobis distance is a distance metric which is scale-invariant
(i.e. not dependent of measurement scaling) and which takes into account dataset
correlations; to this purpose, we also need the covariance matrix Σ of X.

After distance d is determined, classifier function q is defined as:

q(d) =

{
1 = true, d ≤ th
0 = false, d > th

. (8)

with th the internally constant, optimized threshold value. When this threshold
is varied, we can tighten or loosen the decision if a valid LED pixel sequence was
detected.

5 Smart Camera Implementation

In this chapter, we describe the architecture of the used smart camera and how
the algorithm from the LED detection can be implemented on this platform.

5.1 WiCa

WiCa stands for Wireless Camera and this wireless smart camera ‘mote’ is built
in such a way that it can operate stand-alone or in a network of cameras [15].

The camera consists of basically four components; one or two VGA color image
sensors, the Xetal IC3D SIMD processor for low-level image processing [16], a
general purpose processor for intermediate and high-level processing and control,
and a communication module. Both processors are coupled using a Dual Port
RAM (DPRAM) that enables them to work in a shared workspace on their own
processing pace, see Fig. 2a.

Xetal IC3D Processor The IC3D is a member of the NXP Xetal family of
SIMD processors, see Fig. 2b. The video input and output processors are ca-
pable of streaming in and out 3 digital video signals to the internal memory.
The heart of the chip is formed by the Linear Processor Array (LPA) with 320
Processing Elements (PEs). Each of these PEs have simultaneous read and write
access within one clock-cycle to memory positions in the parallel memory. Both
the memory address and the instruction of the PEs are shared in SIMD sense.
All PEs can also read the memory data of their left and right neighbors di-
rectly. At the extremes of the linear array, the inputs and outputs of the PEs are
optionally coupled or mirrored. The PEs have downloadable instructions rang-
ing from arithmetic and single-cycle multiply-accumulate to compound instruc-
tions. In addition to these, there are conditional guarding instructions, enabling
data-dependent operations. Data paths are 10-bits wide. Each PE has two word
registers and a flag register.

The line memory stores 64 lines of 3200 bits. Pixels of the image lines are
placed in an interlaced way on this memory. So QVGA (320x240) images result
in 1 pixel per processor, VGA (640x480) in 2 pixels per processor, etc. The GCP
(Global Control Processor) is a processor dedicated to control the IC3D and to do
some global DSP operations on the data. It takes care of video synchronization,
program flow and also communicates with the LPA and the outside world.

DPRAMDPRAM

CPLDCPLD

ZigBee ZigBee

WirelessWireless

DPRAMDPRAM

CPLDCPLD XETALXETAL

Sensor 1Sensor 1

(a) (b)

Fig. 2. Wireless smart camera development board (WiCa 1.1, (a)) and the “IC3D”
architecture (b), a member of the NXP “Xetal” family of SIMD chips. The WiCa
board has dimensions 8x7cm, is powered by 4 AA batteries and also has a second
camera sensor port not used here.

5.2 Implementation

The algorithm to be implemented will work in a detect-and-track way. First, the
camera’s image plane is searched for the blinking LED. After this search, the
LED position is tracked.

We assume a sequence length of N = 8 and QVGA video mode. Due to the
memory size constraint we could not store 8 complete frames; therefore we store
eight half frames of 160x240 pixels into DPRAM. This action is performed real-
time. Then, from each stored half frame, we read 3 videolines from DPRAM
and put them in internal linememories which are next searched for the LED.
Reading all 8 half frames from DPRAM takes two frametimes, mainly because
of the latency of the DPRAM access, whereas a single 320 pixel linememory
LED search takes approximately 15% of the available IC3D processor time per
videoline. If the LED was not found in the first half of the QVGA space, the same
procedure is followed for the second half of the QVGA space. As a result, the LED
detection of the complete QVGA space takes at most (8+2)·2 = 20 frames which
equals, with a 30 fps frame rate, 0.67 seconds. The total IC3D resource usage
equals approximately 52% program memory, 74% registers, 42% coefficients and
almost all linememories. Because we actually work in VGA mode but downscale
to QVGA, where some filtering is applied, little movement of the LED during
detection is allowed. Also, if the used processor was a Xetal II [17] with its 2048
linememories, we could omit the use of DPRAM, saving in total 12 frametimes
for the complete QVGA LED search which then takes 8 frames which equals,
with a 30 fps frame rate, 0.27 seconds.

LED position tracking is currently performed by a search around the previous
found LED position(s) where the 160x240 pixel window is horizontally centered
around the previous found LED position.

If the LED is successfully found and currently been tracked, a ready signal
will be passed to the other smart camera(s). If every camera is ready, the cap-
turing will be started in a synchronized way where the positions of the LED at
equidistant times will be saved per smart camera. We assume the calibrating
scene cameras are a priori temporal synchronized with respect to each other.
After storing the needed amount of positions, these locations can be read out
and used, making use of the camera network, to perform the calibration process
in a distributed way.

6 Experimental Results

We performed experiments with a WiCa smart camera, containing the IC3D
Xetal processor and a CMOS VGA camera with a 30fps frame rate. The blinking
frequencies of the IR LED were equal to { 30

4 ,
30
3 ,

30
2.2} Hz. This way we obeyed

the Nyquist-Shannon theorem, which states that fLED ≤ 30
2 Hz. Because one

period of blinking of the LED takes fs
fLED

= 30
fLED

frames, the minimum pixel
sequence lengths equal Nmin = 4 for fLED = 30

4 Hz and Nmin = 3 for the other
two blinking frequencies. For the LED dataset creation the LED was held at

different distances to the camera sensor with different lighting conditions and
camera settings like brightness and contrast. These distances ranged from 48 cm
till 2.33 m.

6.1 Classification Experiments

We created two datasets x and y containing Mx and My time-domain pixel
intensity sequences with sequence length N respectively, where we require Mx

and My to be high enough for giving accurate estimation results. Dataset x
contains blinking LED sequences and dataset y random (non-LED) sequences
(50% taken from dynamic scenes to represent a random pixel as close as possible).
Next, we split dataset x in x1 and x2, resulting in a training and a test dataset,
containing Mx1 and Mx2 sequences, respectively. All odd observation sequences
are placed in x1 and all even sequences are stored in x2. In our experiments,
datasets x and y contain thousands of sequences.

Covariance Matrix and Signature Vector Estimation To determine the
values of the covariance matrix Σ and the signature vector Ps, from training
dataset x1, the equivalent frequency domain representation X1 is obtained by
making use of (6). Because we will use a CMOS camera sensor with a very low
pixel integration time which results in a negligible low τ value, all the sinc terms
in (6) can be approximated by one. Now, from X1, the covariance matrix can
be calculated. Also, Ps can be calculated with (7).

Classification Now, we can determine all the distances d between the frequency
representation of all the sequences of test dataset x2 and the signature vector
with the Euclidean or Mahalanobis distance function. This frequency represen-
tation is obtained by making use of (6) and equals X2. If we then input all
distances into function q in (8), with a to be decided optimal threshold value,
and calculate the true positive rate, this number should be close to unity. We
can define this True Positive Rate as

TPR
LED

=
1

Mx2

Mx2∑
i=1

q

(
dist

([
X2i1 , X2i2 , . . . , X2

ibN2 c

]
,Ps

))
. (9)

Likewise, the False Positive Rate of the frequency representation of the random
dataset Y should be close to zero. This rate is defined as

FPR
random

=
1
My

My∑
i=1

q
(
dist

([
Yi1, Yi2, . . . , YibN2 c

]
,Ps

))
. (10)

When we vary threshold th of (8), these both rates will change. For every
threshold value, the set (FPR,TPR)=(x,y) depicts an unique point in the two-
dimensional Receiver Operating Characteristic (ROC) curve. We will use this
binary classification model to find the optimal threshold value satisfying our
needs.

a. Without optimization b. With non-linear optimization

Fig. 3. Spectral components LED and random pixel sequence, fLED = 7.5 Hz, N = 4.
The green circle (1) depicts the optimal Euclidean distance whereas the red ellipse (2)
depicts the optimal Mahalanobis distance.

Blinking LED Pattern Recognition For fLED = 7.5 Hz and N = 4, we have
exactly two unique frequency components F1 and F2 per pixel frame sequence,
enabling 2D visualization of the LED pixel sequence and the random sequence;
see Fig. 3a. Also, the optimum threshold values of both distance metrics are
plotted. Notice that both the circle and ellipse have the same centre which is
the calculated mean value of both frequency components. Also note that e.g. for
fLED = 7.5 Hz and N = 8, there are 4 unique frequencies.

Euclidean and Mahalanobis Distance In our case, the optimum threshold
value equals the value for which we achieve maximum accuracy in the ROC
binary classification. This accuracy equals the proportion of the true results,
both true positives and true negatives. As a formula,

ACC =
TPR

LED
Mx2 + (1− FPRrandom)My

Mx2 +My
. (11)

As a result, the maximum accuracy of the ROC curves of all three blinking
frequencies for both distance metrics and all possible N ≤ 15 are summarized
in the three plots of Fig. 4.

Metric Comparison and Discussion We can observe that Euclidean outper-
forms Mahalanobis due to the optimization for only the threshold value. When
we would also optimize for the circle centres, better results can be expected; i.e.
that Mahalanobis will perform as least equally well as Euclidean. For the given
example with the 2D visualization, a non-linear optimization is performed, see
Fig. 3b. Indeed, higher accuracy values were obtained, but because this opti-
mization was very time-consuming on a state-of-the-art PC already for N = 4,
this optimization is not further elaborated.

Accurate LED detection is already possible for small N with both distance
metrics. In the search for the lowest N with an unfailing classifier, we see that
this holds for fLED = 7.5 Hz, N = 8 and the Euclidean distance metric.

4 5 6 7 8 9 10 11 12 13 14 15

0.96

0.97

0.98

0.99

1

Sequence length N

M
a
x
im

u
m

 a
c
c
u
ra

c
y

3 4 5 6 7 8 9 10 11 12 13 14 15

0.96

0.97

0.98

0.99

1

Sequence length N

3 4 5 6 7 8 9 10 11 12 13 14 15

0.96

0.97

0.98

0.99

1

Sequence length N

Fig. 4. Non-optimized maximum accuracy functions for LED blinking frequencies
30
4

Hz (left), 30
3

Hz (middle) and 30
2.2

Hz (right) for all possible N ≤ 15. The blue
solid lines and the dashed magenta lines depict the Euclidean and Mahalanobis dis-
tance metrics, respectively.

6.2 Spatial Two Camera Calibration

A spatial two camera calibration is performed using the method described in
this paper. See Fig. 5 for the setup and the estimated extrinsic 3D scene.

a. Scene containing two smart cameras b. Reconstructed scene

Fig. 5. Two-camera extrinsic calibration process with the real and estimated scene.

7 Conclusion

A method for the calibration of a smart camera network was presented in this
paper. For robustness, a blinking infrared LED was used as a scene object. For
the blinking LED pattern recognition, we performed a pixel sequence frequency
analysis using Euclidean and Mahalanobis distance metrics as cost functions.
Various LED blinking frequencies are analyzed. Experiments show that for a
low sequence length N ∈ {3, 4}, an accurate blinking LED detection is possible
using both metrics with all investigated LED blinking frequencies. If we want
an unfailing LED detector with the lowest possible N , the best result from our

experiment is given by letting fLED equal 7.5 Hz withN = 8, using the Euclidean
distance metric. We notice that better results could be obtained if we optimize
not only for the threshold value, but also for the mean values of the spectral
components. A distributed implementation on an embedded smart camera is
performed. Finally, for a two-camera setup, a successful extrinsic calibration is
performed using this implementation.

References

[1] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Second Edition. Cambridge University Press, Cambridge, UK, 2003.

[2] A. Barton-Sweeney, D. Lymberopoulos, and A. Savvides, “Sensor Localization
and Camera Calibration in Distributed Camera Sensor Networks”, in Broad-
band Communications, Networks and Systems, pp. 1-10, 2006.

[3] Matlab Camera Calibration Toolbox, Caltech Computational Vision,
http: // www. vision. caltech. edu/ bouguetj/ calib_ doc/ , July 2008.

[4] R. Hartley, “In Defense of the Eight-Point Algorithm”, in IEEE Tr. on Pattern
Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580-593, June 1997.

[5] B. Horn, “Relative Orientation”, in International Journal of Computer Vision,
vol. 4, no. 1, pp. 59-78, 1990.

[6] H.C. Longuet-Higgins, “A Computer Algorithm for Reconstructing a Scene
From Two Projections”, Nature, vol. 293, pp. 133-135, 10 Sept 1981.

[7] S.N. Sinha,M. Pollefeys and L. McMillan, “Camera Network Calibration from
Dynamic Silhouettes”, in IEEE Proceedings of Computer Vision and Pattern
Recognition, vol. 1, pp. I-195–I-202, 2004.

[8] T. Svoboda, D. Martinec and T. Pajdla, “A Convenient Multi-Camera Self-
Calibration for Virtual Environments”, in Presence: Teleoperators and Virtual
Environments, vol. 14, issue 4, August 2005.

[9] H.C. Longuet-Higgins, “The Reconstruction of a Scene From Two Projections
- Configurations That Defeat the Eight-Point Algorithm”, in IEEE Proceedings
of the First Conference on Artificial Intelligence Applications, December 1984.

[10] S.J. Maybank, “The Projective Geometry of Ambiguous Surfaces”, in Ph. Tr.:
Phys. Sc. and Eng., vol. 332, no. 1623, pp. 1-47, July 16, 1990.

[11] H. Yamazoe, A. Utsumi et al., “Geometrical and Temporal Calibration of Mul-
tiple Cameras by Using LED Markers for Image Synthesis”, in ICAT, 2004.

[12] D. Nister, “An Efficient Solution to the Five-Point Relative Pose Problem”, in
IEEE Tr. on Pattern An. and Machine Int., vol. 26, no. 6, pp. 756-777, 2004.

[13] B. Shirmohammadi and C. Taylor, “Self Localizing Smart Camera Networks
and their Applications to 3D Modeling”, in ACM Sensys / First Workshop on
Distributed Smart Cameras, October 2006.

[14] B. Girod, R. Rabenstein et al., Signals and Systems, Chichester, Wiley, 2001.
[15] R. Kleihorst, B. Schueler and A. Danilin, “Architecture and Applications of

Wireless Smart Cameras (Networks)”, in Proceedings ICASSP, 2007.
[16] R. Kleihorst et al., “Xetal: A Low-Power High-Performance Smart Camera

Processor”, in IEEE Int. Sym. on Circ. and Syst., vol. 5, pp. 215-218, 2001.
[17] A.A. Abbo, R.P. Kleihorst et al., “Xetal-II: A 107 GOPS, 600 mW Massively

Parallel Processor for Video Scene Analysis”, in IEEE Journal of Solid-State
Circuits, vol. 43, pp. 192-201, January 2008.

